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Abstract
Using a simplified toy model, we study the quantum coherence effect in the spin-polarized
transport of nano-magnets. A density matrix master equation is used to describe the correlation
in the magnet. Through comparison with the classical rate equation, the coherence effect is
clearly demonstrated. We find that the interaction between the spin-polarized current and the
nano-magnet can be tuned by changing the bias voltage. At small bias voltage, the
ferromagnetic lead will induce an antiferromagnetic exchange field. This exchange field is
raised from the dynamics of the nondiagonal reduced density matrix elements of the
nano-magnet. It is an obvious coherence effect and is beyond the scope of the classical rate
equation. When bias voltage increases, tunneling becomes important and the dominating spin
control mechanism is the spin accumulation which has been well studied in recent works (Timm
and Elste 2006 Phys. Rev. B 73 235304, Timm 2007 Phys. Rev. B 76 014421, Misiorny and
Barnas 2007 Phys. Rev. B 76 054448, Barnas et al 2000 Phys. Rev. B 62 12363). Our results
obviously imply that the coherence effect in the spin-polarized transport of the nano-magnet
cannot be ignored even in the collinear structure. This phenomenon is quite different from the
case of the quantum dot (QD) spin valve which means that the classical rate equation, which is
widely used in the study of the QD spin valve, is invalid for the nano-magnet-based spin valve.
A density matrix description becomes essential. Our results are helpful for future investigations
of nano-magnet devices.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Due to recent fascinating progress in experiments [5–7],
magnetic nanostructures and electronic transport through them
have attracted great attention [1–11]. This is not only because
of their potential technological applications in quantum
computing or information storage [12, 13], but also because
of fundamental interest in their intriguing properties [14, 15].

From the point of view of application, using spin-polarized
electronic current to manipulate and read the spin information
of magnetic nanostructures seems to be the most promising
practical scheme for scalable quantum computation and non-
volatile memory devices, since it can combine the spin-based
devices with conventional semiconductor technology. The
study of the transport can also reveal inner information about

nano-magnets because the transport current depends greatly on
their internal structures.

Two kinds of nano-magnets have been intensively studied
recently. One is the single molecular magnet (SMM). The
most famous SMM is the Mn12 [5, 6, 9, 10]. It is based
on a Mn12O12 core coupled with organic ligands. In the
neutral states, Mn12 has a large spin with S = 10. Due to
the strong easy-axis magnetic anisotropy, there is an energy
barrier for a change of spin direction. Hence, without an
external magnetic field, the spin information in SMMs can
persist for a long time. That is crucial for non-volatile memory
devices. Charge transport through SMMs has been studied
both theoretically [1–4, 9, 10] and experimentally [5, 6]. The
other is the II–VI semiconductor quantum dot (QD) doped with
a single Mn atom, which can be considered as an artificial
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molecular magnet [7, 8, 16]. In this case, the single Mn
atom behaves as a local spin S = 5/2 and is coupled with
the carriers (electrons or holes) through exchange interaction.
The magnetic anisotropy and spin configuration of the single
Mn atom are quite different depending on the charge state of
the QD. Therefore, we can reversibly manipulate the magnetic
properties through electrical or optical control of the charge
state of the QD. Conversely, the charge transport through the
QD is not only determined by the gate and bias voltages, but
also by the quantum state of the local spin.

The theoretical methods to study the transport of the
above two systems are similar to the ones used for normal
QD systems. The only difference is that the internal structure
becomes more complex. As pointed out in the QD system,
if the charge number is not the only quantum number of the
QD, electrons will not tunnel into an eigenstate but a coherent
superposition of states, or entangled states, with the same
charge number [17–20]. In this case, the quantum coherence,
which is essentially the influence of the dynamics of off-
diagonal QD density matrix elements, has to be considered.
In order to include the quantum coherence effect, the density
matrix master equation should be used instead of the classical
rate equation. Quantum coherence manifests itself through
the coupling between nondiagonal density matrix elements
(coherences) and diagonal ones (occupation probabilities).
Without this coupling, the master equation reduces to the
classical rate equation. As for transport, in the absence of
coupling, the quantum coherence has nothing to do with the
tunneling.

The quantum coherence effect has been demonstrated
clearly in the QD system. It will play an important role in the
double QD system [17, 18] and the single QD system coupled
with noncollinear polarized leads [19, 20]. For the QD spin
valve (single QD coupled with collinear ferromagnetic leads),
the coherence effect is zero and the classical rate equation
is exact. However, in the more complicated nano-magnet
system, the quantum coherence effect has not been studied
much. Recently, one work started to address this issue [21],
but detailed calculations to determine the coherence effect in
the nano-magnet system are still absent thus far.

In this work, we use a simplified model to elaborate
the quantum coherence effect in the spin-polarized transport
through a nano-magnet. A detail comparison between the
result of the master equation (with the coherences) and that
of the rate equation (without the coherences) is given. Our
result shows that the coherence effect is essential when the
leads are spin polarized, either collinear or noncollinear. This
implies that when we study the nano-magnet-based spin valve,
the quantum coherence effect becomes a factor that cannot be
neglected. The classical rate equation is invalid in this case.
We find that the spin control (or manipulation) mechanism
via spin-polarized current will change greatly with the bias
voltage. When the bias voltage is large, the spin manipulation
mechanism is primarily the spin accumulation caused by the
asymmetry of the polarizations of the leads. If the bias voltage
is small, the manipulation mechanism is quite different from
the one with spin accumulation. The ferromagnetic leads will
induce an antiferromagnetic exchange field. This completely

results from the quantum coherence and obviously exceeds the
scope of the classical rate equation. When the bias voltage is
varied, due to the change of the spin manipulation mechanism,
the spin state of the nano-magnet can be greatly changed.
This phenomenon is useful for further investigation of the spin
control of nano-magnets.

Our model and analyses are suitable for both systems
mentioned above, namely, either SMM or QD doped with a
single Mn atom.

The paper is organized as follows. In section 2, we set
up the model Hamiltonian and describe the method employed.
Then the numerical result is discussed in section 3. Finally, in
section 4, we summarize our work.

2. Model and method

We consider a nano-magnet weakly coupled to two ferromag-
netic electrodes. The total Hamiltonian is

H = Hc + Hl + Ht. (1)

Here, Hc is the central region Hamiltonian of the nano-magnet.
For the SMM,

Hc =
∑

σ={↑,↓}
ε0nσ + Un↑n↓ − J s ·Sl − K2(Sz

l )
2 − B ·(Sl + s),

(2)
where nσ = d+

σ dσ is the occupation of the lowest
unoccupied molecular orbital (LUMO), d+

σ (dσ ′) is the creation
(annihilation) operator of the LUMO electron with spin
σ(σ ′) = {↑,↓}. We also define the LUMO electron spin
operator s ≡ ∑

σσ ′ d+
σ (σ σσ ′/2)dσ . Sl is the spin operator of

the local spin. ε0 is the onsite energy of the LUMO electron. U
is the Coulomb repulsion between two electrons in the LUMO
orbital and J is the exchange interaction between the LUMO
electron and the local spin. K2 is the easy-axis magnetic
anisotropy.

The main aim of this work is to investigate the quantum
coherence effect. In order to make the physics more
transparent, we only consider a nano-magnet with local spin
Sl = 1/2 and do not consider the external magnetic field B. In
this case, K2(Sz

l )
2 becomes a constant and the associated term

can be neglected. The simplified model is

Hc =
∑

σ={↑,↓}
ε0nσ + Un↑n↓ − J s · Sl, (3)

where Sl = 1/2.
The Hamiltonian (3) is a simplified Hamiltonian for the

semiconductor quantum dot doped with a single Mn atom if
we consider only one electronic orbital in the QD. U is the
Coulomb repulsion between electrons in the same orbital and
J is the exchange coupling between the carriers and the local
spin of the Mn atom. In the self-assembled CdTe QD, the local
spin of the doped Mn atom is Sl = 5/2. For the same reason
mentioned above, in the simplified toy model, we set Sl = 1/2.

The Hamiltonian of the ferromagnetic leads is

Hl =
∑

α={L ,R}

∑

k,σ={↑,↓}
εαkσ c+

αkσ cαkσ , (4)
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where α = {R, L} is the lead index. c+
αkσ (cαkσ ′ ) is the create

(annihilation) operator of the noninteracting electron in lead α

with wavevector k and spin σ (σ ′). Here, we use the wide
band approximation, i.e. the density of states of each lead
ρασ is independent of the wavevector k. The ferromagnetism
of the lead is described by the polarization parameter Pα =
(ρα↑ − ρα↓)/(ρα↑ + ρα↓) and we assume the magnetization
directions of the leads are collinear.

The tunneling Hamiltonian is

Ht =
∑

α={L ,R}

∑

k,σ={↑,↓}
(t d+

σ cαkσ + h.c.). (5)

The tunneling induced broadening is �α = ∑
σ 2π |t|2ρασ =∑

σ �ασ .
The eigenstates of Hamiltonian (3) are easy to obtain.

For simplicity, we restrict ourselves to the large U limit with
U = ∞, which is a quite good approximation when the bias
voltage is not too large. Thereafter, the double occupation of
the LUMO orbital is forbidden. The states of the orbital are |0〉
(no electron on it), |↑〉 (one electron with up spin) and |↓〉 (one
electron with down spin). The quantum states of the local spin
are |↑〉 (m = 1/2), |↓〉 (m = −1/2), where m is the eigenvalue
of Sz

l . Hence, the entire Hilbert space of the central region
is spanned by the states |0 ↑〉, |0 ↓〉, |↑↑〉, |↓↑〉, |↓↑〉, |↓↓〉,
where the first index indicates the state of the orbital and the
second one is the state index of the local spin. However, due to
the exchange interaction, not all the six states are eigenstates.
After diagonalization, the eigenstates are |0 ↑〉, |0 ↓〉, |↑↑〉,
|+〉, |−〉, |↓↓〉. Here

|+〉 =
√

2

2
|↑↓〉 +

√
2

2
|↓↑〉 (6)

|−〉 =
√

2

2
|↑↓〉 −

√
2

2
|↓↑〉. (7)

The three eigenstates |↑↑〉, |↓↓〉 and |+〉 are energy
degenerate, ε↑↑ = ε↓↓ = ε+ = ε0 − 1

4 J . Here, ε0 is the
onsite energy of the LUMO electron. The eigenenergies of
|0 ↑〉 and |0 ↓〉 are degenerate. Actually, it is a constant and we
can choose it as zero. The eigenenergy of |−〉 is ε− = ε0 + 3

4 J .
We used the real-time diagram formalism [22] to compute

the stationary density matrix and the current. The main idea of
this method is to integrate out the electronic degrees of freedom
in the leads in order to get the reduced density matrix of the
nano-magnet. The starting point is the generalized master
equation:

d

dt
Pχ1

χ2
+ i(εχ1 − εχ2)Pχ1

χ2
=

∑

χ1′ χ2′
Pχ1′

χ2′ 	
χ1′ χ1
χ2′ χ2

, (8)

where Pχ1
χ2

= 〈χ2|ρ|χ1〉 is the element of the reduce density
matrix of the nano-magnet. χi is the i th eigenstate and εχi is
the corresponding eigenenergy of the nano-magnet. 	

χ1′ χ1
χ2′ χ2 is

the general transition rate from Pχ1′
χ2′ to Pχ1

χ2
. The transition rate

	
χ1′ χ1
χ2′ χ2 is defined as the sum of all the irreducible self-energy

blocked diagrams, which are enclosed by a Keldysh contour.
The irreducible self-energy diagram can be expanded in powers
of the hybridization �α . In the limit of interest of this paper,

i.e. in the sequential tunneling region, only the terms linear in
�α are retained. A good description of the technical derivation
of the transition rate can be found in [25].

Normally, the dynamic equations of the diagonal density
matrix elements are decoupled from those of the nondiagonal
ones. That gives rise to the classical rate equations

d

dt
Pχ =

∑

χ ′
Pχ ′	χ ′,χ , (9)

where Pχ ≡ Pχ
χ is the occupation of eigenstate χ and

	χ,χ ′ ≡ 	
χ,χ ′
χ,χ ′ is just the normal transition rate. However, if

the coupling is nonzero, the density matrix description should
be used and we have to consider the quantum coherence effect.
In our case, obviously, the quantum coherence effect should
be included when the leads are spin polarized. For example,
	++

+− = ∑
α

i(�α↑−�α↓)

2π
· ∫

dω
f −
α (ω)

ε−−ω−ε0−iη , where f −
α (ε) =

1 − f +
α (ε) and f +

α (ε) is the Fermi distribution function of
lead α. It means that when the leads are spin polarized,
i.e. �α↑ 
= �α↓, P+

+ is coupled to P+
− . For the same reason,

we will find that P+
− is also coupled to P−

− . The case of P−
+

is similar. P+
− and P−

+ are the only two off-diagonal elements
which are connected with the occupation of the SMM in our
case. This is essentially the result of the charge and spin
conservation laws in the diagrammatic method [25]. Hence,
with the master equation description, in total eight equations
have to be considered, including the dynamics of P+

− and P−
+ .

Meanwhile, for the rate equation, we only need to calculate the
six occupation dynamics equations.

Through the comparison of the results of the master
equation and the rate equation, we can distinguish the quantum
coherence effect in this system. Also, it is meaningful to clarify
the condition under which the rate equations is still applicable.

Here, we use kBT as the energy unit, i.e. kBT = 1 and we
only concentrate on the sequential tunneling case, kBT � �α .
So, we assume �α = 0.1 hereafter.

3. Results and discussion

In the following, we discuss the numerical results of this
simplified model. Due to the simplification, this model allows
us to exhibit the physics clearly. Only the stationary case is
being considered here, hence, d

dt Pχ1
χ2

= 0.
When the leads are nonmagnetic, i.e. PL = PR = 0,

as expected, the results of the master equation are nearly the
same as that of the rate equation. It means that the nondiagonal
density matrix elements have nothing to do with the stationary
properties. In this case, rate equations are sufficient.

If the leads are ferromagnetic, differences appear.
Consider first the case of PL = PR . With the rate equation,
as shown in figure 1, the central region is always nonmagnetic.
The expected value of the z component of the molecule’s total
spin Sz , including the LUMO electron and the local spin, is
independent of the polarization and bias voltage. That is to say
that for PL = PR , neglecting the quantum coherence effect in
the nano-magnet, the spin-polarized current will not influence
the spin state of the molecule.

3
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Figure 1. Bias dependence of Sz of the molecule. (a) The red
dotted-dashed line is for PL = PR = 0.8 with the master equations.
The blue dashed line is for PL = PR = 0.5 with the master
equations. The black solid line is for PL = PR = 0.8 with the rate
equations. With the rate equation, both the case PL = PR = 0.8 and
0.5 will give the same result and we only show one of them. (b) The
red dotted-dashed line is for PL = PR = −0.8 with the master
equations. The blue dashed line is for PL = PR = −0.5 with the
master equations. The black solid line is for PL = PR = −0.5 with
the rate equations. With the rate equations, both the cases
PL = PR = −0.8 and −0.5 will give the same result and we only
show one of them. The M (R) in the legend indicates that the result is
calculated with master equation (rate equation). Here, the parameters
are kBT = 1.0, J = 4.0, �α = 0.1, ε0 = 5.0.

However, when we take into account the coherence terms,
the behaviors are quite different. The SMM can be magnetized
by the spin-polarized current even when PL = PR . Coherence
induces an antiferromagnetic interaction between the SMM
and the conduction electrons in the leads. It is shown that the
larger the polarization of the leads is, the stronger the molecular
magnetism is. And when we increase the voltage, Sz decreases
monotonically until it reaches zero. This is extremely different
from the normal QD spin valve system [23, 24] in which as
long as PL = PR (symmetrical junction), the QD is always
nonmagnetic. The reason for this is that in the single level QD,
the charge number is the only quantum number (collinear case)
for the tunneling. Hence, coherence is naturally decoupled
from the occupations of the QD and there is no exchange field.
But in SMMs, due to the more complex inner structure, charge
number is no longer the only quantum number of the molecule.
Therefore, the exchange field occurs naturally. This exchange
field surely can be used to control the spin states of the
SMM. We call this spin manipulation mechanism ‘spin torque’,
distinguishing it from another magnetization mechanism called
‘spin accumulation’ which we shall discuss later.

Through the comparison in figure 1, we can see that this
exchange interaction is clearly absent in the framework of
rate equations and is completely a quantum coherence effect,
caused by the dynamics of the nondiagonal density matrix
elements. It means that, when the bias voltage is small, the

Figure 2. Bias dependence of the Sz of the molecule. (a) The red
solid line is for PL = −0.8 and PR = −0.9 with the master equation.
The blue dashed line is for PL = −0.8 and PR = −0.9 with rate
equation. (b) The red solid line is for PL = −0.9 and PR = −0.8
with the master equation. The blue dashed line is for PL = −0.9 and
PR = −0.8 with the rate equation. Other parameters are the same as
in figure 1.

classical rate equations are not sufficient for the spin dynamics
of the molecule. The full master equation needs to be used.

The spin accumulation mechanism, intensively studied in
previous investigations [23, 24], is considered as an effective
way to control the spin state of the molecule. It results from
the asymmetry of the polarizations of the leads. For example,
as shown in figure 2(a), the density of states of the up spin
of the left lead is larger than that of the right lead. Hence, if
the bias is positive, electrons with up spin will be accumulated
in the molecule with increasing bias voltage. Conversely, the
electrons with down spin will be accumulated as shown in
figure 2(b). Actually, the spin is accumulated on the LUMO
and, through the exchange coupling J , changes the spin state
of the SMM. However, if bias voltage is small, tunneling is
blocked and the spin accumulation will not occur. In this case,
the dominating spin control mechanism is just the spin torque
mentioned above. In the intermediate bias voltage regime, it
will be a combination of (or competition between) the two.
From the comparison in figure 2, obviously in order to describe
the spin manipulation correctly in all bias voltage regimes, the
quantum coherence effect has to be considered, i.e. the master
equation is necessary.

The spin accumulation depends on the relative magnitude
of the spin polarizations of the leads. But the spin torque is
determined by the total polarization of the leads. In figure 2,
the total polarization of (a) and (b) are the same. So at small
voltage, due to the antiferromagnetic interaction, Sz > 0
in both (a) and (b). However, due to the difference in the
spin accumulation, different behaviors appear in the transition
regime (middle bias voltage). An interesting spin state reversal
is realized in figure 2(b). If the total polarization is zero,
i.e. PL + PR = 0, the spin torque disappears because in this

4
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Figure 3. Bias dependence of the Sz of the molecule. (a) The red
solid line is for PL = 0.9 and PR = −0.9 with the master equation.
The blue dashed line is for PL = 0.9 and PR = −0.9 with the rate
equation. (b) The red solid line is for PL = −0.9 and PR = 0.9 with
the master equation. The blue dashed line is for PL = −0.9 and
PR = 0.9 with the rate equation. Other parameters are the same as in
figure 1.

case, the exchange fields of the two leads cancel each other (see
figure 3).

In practice, the exchange coupling J can be deduced from
the energy levels through experiments. In our model, J =
ε− − ε+. In the single molecule system, normally the energy
space is several meV. That is to say that the temperature here is
about 10 K.

Although our simple model accounts fairly well for
the quantum coherence effect in the spin manipulation, it
is not sufficient to describe the influence of the dynamics
of nondiagonal density matrix elements on the electronic
transport, such as the current. As shown in figure 4, the
coherence effect is absent in the current. The reason for
this is that in this simple model, we ignore the magnetic
anisotropy in the nano-magnet. Hence, due to the energy
degeneracy of the spin states, the spin rotation will not
influence the transport current. Moreover, this model is too
limited and several of the characteristics of a nano-magnet
have been neglected. Meanwhile, the interaction between the
molecule and the environment, which can surely influence
the quantum correlation in the SMM, has also not been
considered here. Further theory needs to be developed to
study the quantum coherence effect on electronic transport
in realistic nano-magnet systems. Such a theory should
include the large local spin, easy-axis, transverse magnetic
anisotropy and the interaction with the environment. The
results presented here can be considered as a first attempt in
this direction.

However, we believe that the quantum coherence effect,
especially the coherent spin torque mechanism, will play an
important role in actual SMM systems. Essentially, there are
two main differences between our toy model and an actual

Figure 4. (a) The dI/dV curve. (b) The current through the
nano-magnet. With master or rate equations, the currents are exactly
the same. PL = PR = −0.5, ε0 = 5.0 and J = 8.0. Other
parameters are the same as in figure 1.

SMM system. One is that the local spin of an actual SMM
is normally larger than 1/2, which is used in our toy model.
The other is that in an actual SMM system interaction with
the environment cannot be avoided. According to a previous
work [26], when the spin quantum number increases, the spin-
flipping rate of the SMM with spin-polarized current will
become lower. That is to say the spin manipulation time
τm of an actual SMM is longer than that of our toy model.
Meanwhile, the influence of the environment on the SMM
can be described by the phase coherence time T2. Therefore,
whether our analysis is suitable for an actual system depends
on whether the manipulation time τm is much shorter than the
phase coherence time T2 of the SMM. It has been shown that
the T2 of SMMs is of the order of μs at low temperature [27].
As far as we know, there are no experimental data about
the manipulation time of SMM with spin-polarized current,
but we can deduce it from the domain wall systems. The
cycle time for the writing and shifting of the domain walls
with spin-polarized current is a few tens of nanoseconds [28].
It is reasonable to suppose that the manipulation time of
one SMM with spin-polarized current should not be longer
than that of the domain wall system. Therefore, at least
for some actual SMM systems, the phase coherence time
T2 is at least ten times larger than the manipulation time
τm. Thus, in these systems the influence of environment
will not overwhelm the coherent spin torque of the spin-
polarized current. Our results are suitable for these SMM
systems.

4. Conclusion

In summary, we use a simplified model to study the quantum
coherence effect, arising from the dynamics of the nondiagonal
reduced density matrix elements, in transport through nano-
magnets. With the quantum master equation, we find that in

5
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the sequential tunneling case, the current will not only interact
with the nano-magnet via an antiferromagnetic exchange field,
but also can change the charge states of the nano-magnet. As
a result, there are two ways to control the spin states of the
nano-magnet by the spin-polarized current, depending on the
applied bias voltage. At small bias voltage, the tunneling
is weak and the dominating control mechanism is the spin
torque due to the antiferromagnetic exchange field between
the conduction electrons in the leads and the local molecular
spin. Its magnitude depends on the total polarization of the
leads. At large bias voltage, tunneling begins to play an
important role. In this case, the primary mechanism of the spin
control is through spin accumulation, which results from the
asymmetry of the polarizations of the leads. In the intermediate
bias region, the actual interaction is just the combination of
the two mechanisms mentioned above; an intriguing crossover
of the spin states can be realized in this region. Through
the comparison between the master equation and the classical
rate equation, we note that the spin torque results completely
from the quantum coherence, which is beyond the framework
of the classical rate equations. It means that if we want to
understand the spin manipulation of the nano-magnet with
a spin-polarized current, the master equation description is
essential. Our results demonstrate that the quantum coherence
has to be considered carefully in the future study of the
nano-magnet-based devices in both spintronics and quantum
computing.
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